منابع مشابه
Between Morphic and Hopfian
Relatively morphic submodules are defined and a new class of modules between morphic and Hopfian modules is singled out. Special care is given to the Abelian groups case.
متن کاملHopfian and co-hopfian subsemigroups and extensions
This paper investigates the preservation of hopficity and co-hopficity on passing to finite-index subsemigroups and extensions. It was already known that hopficity is not preserved on passing to finite Rees index subsemigroups, even in the finitely generated case. We give a stronger example to show that it is not preserved even in the finitely presented case. It was also known that hopficity is...
متن کاملHopfian and strongly hopfian manifolds
Let p : M → B be a proper surjective map defined on an (n+ 2)-manifold such that each point-preimage is a copy of a hopfian n-manifold. Then we show that p is an approximate fibration over some dense open subset O of the mod 2 continuity set C′ and C′ \O is locally finite. As an application, we show that a hopfian n-manifold N is a codimension-2 fibrator if χ(N) 6= 0 or H1(N) ∼= Z2.
متن کاملGeneralizations of Hopfian and co-Hopfian modules
In this paper, all rings are associative with identity and all modules are unital left modules unless otherwise specified. Let R be a ring and M a module. N ≤M will mean N is a submodule of M. A submodule E of M is called essential in M (notation E ≤e M) if E∩A = 0 for any nonzero submodule A of M. Dually, a submodule S of M is called small in M (notation S M) if M = S+T for any proper submodul...
متن کاملMorphic Computing
In this paper, we introduce a new type of computation called “Morphic Computing”. Morphic Computing is based on Field Theory and more specifically Morphic Fields. Morphic Fields were first introduced by Rupert Sheldrake [1981] from his hypothesis of formative causation that made use of the older notion of Morphogenetic Fields. Rupert Sheldrake [1981] developed his famous theory, Morphic Resonan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analele Universitatii "Ovidius" Constanta - Seria Matematica
سال: 2013
ISSN: 1844-0835
DOI: 10.2478/auom-2013-0042